Bootstrap Prediction Bands for Functional Time Series
نویسندگان
چکیده
A bootstrap procedure for constructing prediction bands a stationary functional time series is proposed. The exploits general vector autoregressive representation of the time-reversed Fourier coefficients appearing in Karhunen–Loève process. It generates backward-in-time replicates that adequately mimic dependence structure underlying process model-free way and have same conditionally fixed curves at end each pseudo-time series. error distribution then calculated as difference between model-free, bootstrap-generated future observations forecasts obtained from model used prediction. This allows estimated to account innovation estimation errors associated with possible due misspecification. We establish asymptotic validity estimating conditional interest, we also show enables construction achieve (asymptotically) desired coverage. Prediction based on consistent studentized are introduced. Such allow taking more appropriately into local uncertainty Through simulation study analysis two datasets, demonstrate capabilities good finite-sample performance proposed method.
منابع مشابه
Semiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملBootstrap prediction intervals for autoregressive time series
This paper is concerned with the calculation of interval forecasts for highly-persistent autoregressive (AR) time series using the bootstrap. Three methods are considered for countering the small-sample bias of least squares estimation for processes which have roots close to the unit circle: a bootstrap bias-corrected OLS estimator; the use of the Roy-Fuller estimator in place of OLS; and the u...
متن کاملSieve Bootstrap for Time Series Sieve Bootstrap for Time Series
We study a bootstrap method which is based on the method of sieves. A linear process is approximated by a sequence of autoregressive processes of order p = pn, where pn ! 1 ; p n = on as the sample size n ! 1. F or given data, we t h e n estimate such a n A R pn model and generate a bootstrap sample by resampling from the residuals. This sieve bootstrap enjoys a nice nonparametric property. We ...
متن کاملBootstrap Prediction Intervals for Power-transformed Time Series
_________________________________________________________________ In this paper we propose a bootstrap resampling scheme to construct prediction intervals for future values of a variable after a linear ARIMA model has been fitted to a power transformation of it. The advantages over existing methods for computing prediction intervals of power transformed time series are that the proposed bootstr...
متن کاملNeural network sieve bootstrap prediction intervals for hydrological time series
When analyzing time series data, the estimation of forecast intervals, based on an observed sample path of the process, is a key issue. If the process is linear and the distribution of the error process is known, the methodology is well developed but, for departures from the true underlying distribution, the prediction intervals perform poorly. In this latter case several distribution free alte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2021
ISSN: ['0162-1459', '1537-274X', '2326-6228', '1522-5445']
DOI: https://doi.org/10.1080/01621459.2021.1963262